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Axisymmetric Problems

The evolution of the particles of a compressible fluid in a Lagrangian reference frame is governed
by the following system of differential equations:

Euler’s Equations

dv
Momentum Conservation: pd—: =V.o
1d
Mass Conservation: - v
p dt
. de N
Energy Conservation: pE =0:VV
Equation of State: p = EOS(e, p)
Az
Equation of Motion: d—: =V

@ For 3D problems with axial symmetry, the reduction to a 2D meridian cut " provides a
significant computational advantage

@ Maintaining both symmetry preservation and energy conservation has proven challenging

@ We will present an extension of our general finite element framework from Part |, which
conserves total energy by construction while maintaining good symmetry.

Kolev et al. (LLNL) High-Order Finite Elements for Lagrangian Hydro MultiMat 2011 2/30



What Can Go Wrong?

Axisymmetric ICF Test Axisymmetric Spherical Sedov Test

o |ICF-like implosion with @ Spherical Sedov blast wave in axisymmetric mode.
radial pressure drive. A

Total energy should remain 1.0 for all time.

@ Unstructured butterfly @ Traditional SGH methods use the Wilkin's area

.m.es.,h with symmetric weighted approach for computing accelerations
initial conditions. . i
@ This preserves symmetry of accelerations but the

corresponding energy update may not be conservative.

@ Axis jet is numerical
and gets worse as mesh
is refined.

6% spurious gain in energy leads to incorrect shock
speed and does not improve under mesh refinement.

‘[—&xact3p 6 —Exact 3D
1z approx;

rz-approx|

Total Energy

Symmetry breaking and lack of energy conservation lead to non-physical results }
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Overview of Axisymmetric Methods

Staggered-grid hydro (SGH) methods
o M. L. Wilkins, Calculations of elastic-plastic flow, Meth. Comput. Phys., 3, 1964.

@ P. Whalen, Algebraic limitations on two dimensional hydrodynamics simulations, J. Comput.
Phys. 124, pp. 46-54, 1996.

o E. Caramana, D. Burton, M. Shashkov and P. Whalen, The construction of compatible
hydrodynamics algorithms utilizing conservation of total energy, J. Comput. Phys., 146,
pp. 227-262, 1998.

o L. Margolin and M. Shashkov, Using a curvilinear grid to construct symmetry-preserving
discretizations for Lagrangian gas dynamics, J. Comput. Phys. 149, pp. 389-417, 1999.

A. Barlow, D. Burton and M. Shashkov, Compatible, energy and symmetry preserving 2D
Lagrangian hydrodynamics in rz cylindrical coordinates, Proc. Comp. Sci., 1(1), ICCS 2010,
pp. 1893-1901, 2010.

Finite element-based methods

o P. Matejovic and V. Adamik, A one-point integration quadrilateral with hourglass control in
axisymmetric geometry, Comp. Meth. Appl. Mech. Eng., 70(3), pp. 301-320, 1988.

o P. Matejovic, Quadrilateral with high coarse-mesh accuracy for solid mechanics in
axisymmetric geometry, Comp. Meth. Appl. Mech. Eng., 88(2), pp. 241-258, 1991.

Cell-centered methods

o P.-H. Maire, A high-order cell-centered Lagrangian scheme for two-dimensional compressible
fluid flows on unstructured meshes, J. Comput. Phys., 228 (7), pp. 2391-2425, 20009.
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Position and Strong Mass Conservation

i

@ We introduce a 2D Curvilinear FEM mesh on I'(t) with zones I';(t) and denote ‘
Q.

the 2D position vector, parametric mapping and Jacobian with x(t), ®, and J,.
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Position and Strong Mass Conservation

@ We introduce a 2D Curvilinear FEM mesh on I'(t) with zones I';(t) and denote ‘

the 2D position vector, parametric mapping and Jacobian with x(t), ®, and J,.

Axisymmetric strong mass conservation

o Let Q/(t) be the revolution of an arbitrary set ["(t) C ['(t). Then

[oow=[ ow) — o[ ry=2x[ row)
Q'(t) Q' (to) ' (t) (o)

@ Therefore the strong mass conservation principle in RZ takes the form

r(t)p(t)Jz(t)| = r(to)p(to)dz(t0)] |
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Position and Strong Mass Conservation

the 2D position vector, parametric mapping and Jacobian with x(t), ®, and J,.

@ We introduce a 2D Curvilinear FEM mesh on I'(t) with zones I';(t) and denote ‘

Axisymmetric strong mass conservation

o Let Q/(t) be the revolution of an arbitrary set ["(t) C ['(t). Then

[oow=[  pw) — on [ rpy=2x [ ro(w)
Q'(t) Q' (to) ' (t) (o)

@ Therefore the strong mass conservation principle in RZ takes the form

r(t)p(t)Jz(t)| = r(to)p(to)dz(t0)] |

Axisymmetric mass matrices
@ Let w and ¢ be the kinematic and thermodynamic finite element basis functions on T.

@ Define the weighted axisymmetric mass matrices

M7 :/ roww’ and MZ :/ rpdpe”
r(t) r(t)
@ The RZ strong mass conservation principle implies that these are constant in time:

Mg dMg
dt dt
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Axisymmetric Momentum Equation

Reducing the 3D momentum equation to the axisymmetric cut plane I' we get

/ (pﬂ> -vT/;:—/ o:Vw, —» 2\&/ (p—) ~v?/,-:—2\&/ ro;: Veew;
Q@) \ dt Q(t) r(e) r(e)
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Axisymmetric Momentum Equation

Reducing the 3D momentum equation to the axisymmetric cut plane I' we get

/ (pg>~vT/,-:—/ oc:Vw;, — 2\7&/ r(pd—v)-vT/,- —2\7&/ ror: Vew;
o \ dt 1) r(t) dt (o)

Axisymmetric tensors
The axisymmetric gradient of a vector field is given by
dv:  dv;
. _ [ & & _ (V2av O
vor= (8 & o)  =(Y%7 Q)
0 0 =@ "
r’ z—r—0
Therefore, for 0 = —pl + uVV, the axisymmetric stress tensor is
o (~PVHUV2T O
" 0 —p+ pt

MultiMat 2011

High-Order Finite Elements for Lagrangian Hydro

Kolev et al. (LLNL)



Axisymmetric Momentum Equation

Reducing the 3D momentum equation to the axisymmetric cut plane I' we get
dv . . . .
p— |- W =— o:Vw, —> 2\)& p— ~w,-:—2\r& row : Vew;
Q@) \ dt Qt) r(t r(t)

Axisymmetric tensors
The axisymmetric gradient of a vector field is given by

Avy vy 0

gz gr :(Vde 0)

Ver= (% & o 5w
0 0 =@ "
r’ z—r—0

Therefore, for 0 = —pl + uVV, the axisymmetric stress tensor is
o (PN V2V 0
" 0 —p+pt
The axisymmetric momentum equation then becomes

/ r(pdfv).w.—f/ r(a2d 0 ).(V2dv74' 0)
r() dt ' g \ O —ptp) 0 -

- Vr W,
= —/ r(02d © VogWi)—pwr + p1——
r(t)

The % term is never evaluated at r = 0 (quadrature points are interior and lim,_,o V’;'V’ =0).
MultiMat 2011 6 /30
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Axisymmetric Stress Tensor

o(X) = —p() +0a(X) +s(X)
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Axisymmetric Stress Tensor

o(X) = =P+ aa(X) +s(X)

Artificial viscosity
@ Consider our default option: o, = gz (V).
@ Shock direction, 51, directional length scale Zﬁ and measure of compression, As} Vv, are
computed the same way as in 2D (ignore the €y eigenvector).
@ Vorticity/compression measure uses RZ gradient: ¢ = |V 2 - V|/||V,zV].
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Axisymmetric Stress Tensor

o(X) = —p(X)N + 7a(X) + s(X)

Artificial viscosity
@ Consider our default option: o, = gz (V).
@ Shock direction, 51, directional length scale Zﬁ and measure of compression, As} Vv, are
computed the same way as in 2D (ignore the €y eigenvector).
@ Vorticity/compression measure uses RZ gradient: ¢ = |V 2 - V|/||V,zV].

Stress deviator
@ The axisymmetric stress deviator matrix has the form

s, s, 0
zZZ Zr 52d 0
S=| Sz Srr 0 =
0 0 s 0 se
00/ ;_r_9
with s;r = s, and spg = —(Szz + Sir) since s, is symmetric and traceless.

@ The semi-discrete stress deviator equation is

52d(V2dV — VVaq4) = (VadV — VVad)52d

ds: . 1 ~
2d _ g, = 2us (EZd(V) - EV,Z - v) + >

dt

@ We do not keep track of spg, since the plastic-yield factor can be computed directly:

F(s, ) 2 Y2 Y2
s, = — =
3 TI’(SQ) 3(532 + SzzSrr + 5r2r + 5r21)
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Semi-discrete Axisymmetric Method

Semi-discrete axisymmetric finite element method

Axisymmetric generalized corner

L d
force matrix: Momentum Conservation: M(,Zd—: =—-FZ%.1
F’z--:/ r(or : VW) ¢; d
(F%)y r(t) (o= - Vieitt) ¢ Energy Conservation: Mgzd—(z =(F5)T.v
Axi . . . . . dx
xisymmetric stress deviator rate: Equation of Motion: —=v
dt
d
(8mn)j = rp (8rz)mn ¢; Stress Deviator Rate: Mz . ¢ g™
0 ¢ dt )

By strong mass conservation, we get exact semi-discrete energy conservation:

dE d / \\7|2+ . d ) / . \\7|2+r .
= L i = g —_
dt dt Q(t) P 2 P dt r(e) P 2 P

d (V'MCZ'V

> +1-M;Z-e> :271'(7v-F'2-1+1-(F'Z)T-v>:O.

This holds for any choice of velocity and energy spaces!
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Axisymmetric Sedov Explosion

40x40 Lagrangian SGH - Density 20x20 Lagrangian FEM - Density
1.0+ 1.0+
0.8 08—
0.6 0.6
04— 04—
0[2 ll“J 0.6 ll‘.‘l L‘IT ll“.? ll“‘ 06 ll‘.‘l L‘ﬂ
@ Symmetry is not preserved @ Symmetry is preserved
@ Mesh distorted near the origin @ Curvilinear zones match physics

@ FE pressure treatment
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Axisymmetric Sedov - Scatter Plots

Coarse Mesh Scatter Plot of Density vs Radius Fine Mesh Scatter Plot of Density vs Radius
6 . 6 - .
— Exact — Exact
------- 40x40 SGH ; e 80x80 SGH
Sl 20x20 FEM : | # | S| 40x40 FEM
4 4
z z
3} o3
[ 2
a a
2t 2t
1F 1
0 - i 0 i
04 05 06 07 08 09 1.0 11 04 05 06 07 08 09 1.0 11
Radius Radius
@ SGH shock is too fast @ SGH does not improve under refinement
@ FEM is good with only 20x20 zones @ FEM matches exact solution very closely
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Axisymmetric Sedov - Energy Conservation

Comparison of Energy Conservation BLAST Energy Transfer
1.2 . . . . . .
1.0
1.05¢
& 0.8F : y
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5 1.0aF
g > — Total Energy
3
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3 1.03f e
N w — Internal Energy
s
13
o
2 1.02p 0.4 ]
1.01f
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1.00
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7 5 5 = 3 2 ) o .
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ime Time
H 0,
@ SGH gains 6% energy @ BLAST converts IE to KE without loss

@ BLAST conserves energy to machine precision
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Simple Velocity Driven ICF-like Test

Internal Energy Internal Energy

auiRaaia
AR
D

R
SRR
SRR
TR
RS
R

SR
R
NS
R

log(Density) log(Density)
ALE Staggered Grid Hydro Pure Lagrangian FEM

S. Galera, P-H. Maire, J. Breil, A two-dimensional unstructured cell-centered multi-material ALE scheme using
VOF interface reconstruction, JCP, 2010.
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Axisymmetric Elastic-Plastic Shock Wave

Q3-Q2-RK4, 2D rz, Unstructured Mesh: Scatter Plot

— Exact
...... BLAST 9pts/zone

L I n I

0.2 0.4 0.6 0.8 1.0
Distance

@ Axisymmetric version of the problem from Talk | @ 1D symmetry is preserved

o R3@Q-RK4 method on highly unstructured 2D mesh @ No artifacts at axis of rotation
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Parallelism in Our Research Codes

Our Research Codes

@ BLAST: C++ high-order curvilinear FEM
Lagrangian hydrocode. Solves XY/RZ/3D
problems on tri/quad/tet/hex meshes with
many finite element options.
www.lInl.gov/CASC /blast

o MFEM: modular C++ finite element library.
mfem.googlecode.com

@ GLVis: OpenGL visualization tool.
glvis.googlecode.com

BLAST algorithm

Read mesh, material properties and input parameters
Loop over time steps:
- Loop over the zones in the domain:
- Loop over quadrature points in each zone:
- Compute hydro forces associated with the quadrature point
- Assemble zone contribution to global linear system and rhs
- Solve global linear system for new accelerations
- Integrate accelerations in time to get velocities and new mesh positions
- Update internal energies due to hydrodynamic motion

Kolev et al. (LLN Elements for Lagrangian Hydro MultiMat 2011
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Parallelism in Our Research Codes

Our Research Codes

@ BLAST: C++ high-order curvilinear FEM
Lagrangian hydrocode. Solves XY/RZ/3D
problems on tri/quad/tet/hex meshes with
many finite element options.
www.lInl.gov/CASC /blast

o MFEM: modular C++ finite element library.
mfem.googlecode.com

@ GLVis: OpenGL visualization tool.
glvis.googlecode.com

BLAST algorithm

Read mesh, material properties and input parameters
Loop over time steps:
- Loop over the zones in the domain:
- Loop over quadrature points in each zone:
- Compute hydro forces associated with the quadrature point
- Assemble zone contribution to global linear system and rhs
- Solve global linear system for new accelerations
- Integrate accelerations in time to get velocities and new mesh positions
- Update internal energies due to hydrodynamic motion

Two layers of parallelism:
® MPI-based parallel finite elements in MFEM — domain-decomposed between CPUs
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Parallelism in Our Research Codes

Our Research Codes

@ BLAST: C++ high-order curvilinear FEM
Lagrangian hydrocode. Solves XY/RZ/3D
problems on tri/quad/tet/hex meshes with
many finite element options.
www.lInl.gov/CASC /blast

o MFEM: modular C++ finite element library.
mfem.googlecode.com

@ GLVis: OpenGL visualization tool.
glvis.googlecode.com

BLAST algorithm

Read mesh, material properties and input parameters
Loop over time steps:
- Loop over the zones in the domain:
- Loop over quadrature points in each zone:
- Compute hydro forces associated with the quadrature point
- Assemble zone contribution to global linear system and rhs
- Solve global linear system for new accelerations
- Integrate accelerations in time to get velocities and new mesh positions
- Update internal energies due to hydrodynamic motion

Two layers of parallelism:
@ MPI-based parallel finite elements in MFEM — domain-decomposed between CPUs
@ CUDA-based parallel corner forces in BLAST — zone-decomposed on GPUs
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First Parallel Layer: CPU/MPI Domain Decomposition

Parallel data decomposition in BLAST
@ Each CPU is assigned a subdomain consisting of a number of zones

@ MFEM handles the translation between local finite element bilinear forms / grid functions
and global parallel matrices / vectors.

@ Just a few MPI calls (MPI_Bcast and MPI_Allreduce).

MPI-based parallel finite elements in MFEM
o Parallel mesh
@ Parallel finite element space

o Parallel stiffness matrix and load vector

MultiMat 2011 15/ 30
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First Parallel Layer: CPU/MPI Domain Decomposition

Parallel data decomposition in BLAST
@ Each CPU is assigned a subdomain consisting of a number of zones

@ MFEM handles the translation between local finite element bilinear forms / grid functions
and global parallel matrices / vectors.

@ Just a few MPI calls (MPI_Bcast and MPI_Allreduce).

d

(1) Parallel mesh splitting (domain decomposition using METIS).
(2) Parallel mesh refinement.

MPI-based parallel finite elements in MFEM
o Parallel mesh

%
eSS

o
%
%

XA

,,,,.
SRR
217

RN
RXXK

—

(1)

Vo
OSSN
AAARSNRSRN,
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First Parallel Layer: CPU/MPI Domain Decomposition

Parallel data decomposition in BLAST
@ Each CPU is assigned a subdomain consisting of a number of zones

@ MFEM handles the translation between local finite element bilinear forms / grid functions
and global parallel matrices / vectors.

@ Just a few MPI calls (MPI_Bcast and MPI_Allreduce).

MPI-based parallel finite elements in MFEM
°
@ Parallel finite element space

e @

!

—

)

—
—
~
L[]
[
[

©

(1) Find shared degrees of freedom (dofs).

(2) Form groups of dofs and assign ownership.

(3) Build a parallel Boolean matrix P = dofs_truedofs identifying each dof with a master (true) dof.
We use the ParCSR format in the hypre library for parallel matrix storage.
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First Parallel Layer: CPU/MPI Domain Decomposition

Parallel data decomposition in BLAST
@ Each CPU is assigned a subdomain consisting of a number of zones

@ MFEM handles the translation between local finite element bilinear forms / grid functions
and global parallel matrices / vectors.

@ Just a few MPI calls (MPI_Bcast and MPI_Allreduce).

MPI-based parallel finite elements in MFEM
°
°

o Parallel stiffness matrix and load vector
(1) Assemble the stiffness matrix in each processor and form a block-diagonal matrix Agofs-
(2) Compute A = PTAgowP (using hypre's RAP).
(3) Form byofs by assembling the load vector in each processor.
(4) Compute b = P bgofs.
(5) Global problem: Ax = b.
(6) Restriction to each processor: Px.

No explicit communications needed!
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Parallel Sedov Blast in 2D

@ 640 x 640 grid on 256 processors with uniform Cartesian partitioning
@ Shown are the processor subdomains and the mesh inside one of the processors

@ The shock is resolved in a singe zone
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Parallel Weak Scala

o Fixed problem size per processor (8%)

@ Shown is the 643 grid on 512 processors

2.5 T T T T

perfect scalability

g
[=)
T

-
u
T

g
o
T

o
wn
T

Average iteration time (s)

i i i i
0.0 1 8 64 512
Number of processors
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allel Noh Implosion in

5

@ 512 x 512 grid on 128 processors with non-uniform partitioning (from METIS).
@ Shown are the processor subdomains and the mesh inside one of the processors

@ The shock is resolved in a singe zone
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@ Fixed total problem

size

o Shown is the 323 grid on 128 processors

@ Good performance on 512 processors with

only 64 zones/processor

26,

20,

Average iteration speedup (log scale)
N
>

perfect scalability -
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Number of processors

Elements for Lagrangian Hydro
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Second Parallel Layer: GPU/CUDA Zone Decomposition

GFLOPs Bandwidth

Theoretical
GFLOP/s

1500

1250

1000

750

500

250
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==e=—NVIDIA GPU Double Precision
==e==|ntel CPU Single Precision
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Westmere

v

entiunt 4 v pertow
Jan-03 Jun-04 Oct-05 Mar-07 Jul-08 Dec-09

Theoretical GB/s
200
180
- CPU
160 -+
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140
120
100
80
60
Westmere
0 N Bloomfield,
Woodcrest
X _—M
Harpertown
0 “Rorthwood
2003 2004 2005 2006 2007 2008 2009 2010

@ GPUs offer unprecedented computational power and memory bandwidth.

@ Profiling results show that zonal calculations, such as the computation of the corner force
matrix, have high flops/bytes ratios and are the dominant cost in BLAST.

@ Together with Tingxing Dong (UTK), we developed a second, CUDA-based, parallel layer in
BLAST to assist the CPU with some of these computations.

Kolev et al. (L
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CUDA Kernels in BLAST

o Consider the semi-discrete finite element method in BLAST (without strength):

d

Momentum Conservation: d—: = —M\TIF -1
di

Energy Conservation: £ = Me_lFT Y
d:

Equation of Motion: d—: =v

@ We used CUDA to accelerate the following computations on the GPU:
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CUDA Kernels in BLAST

o Consider the semi-discrete finite element method in BLAST (without strength):

d

Momentum Conservation: d—: = —M\TIF -1
di

Energy Conservation: £ = Me_lFT Y
d:

Equation of Motion: d—: =v

@ We used CUDA to accelerate the following computations on the GPU:
@ Evaluation of F.
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CUDA Kernels in BLAST

o Consider the semi-discrete finite element method in BLAST (without strength):

dv

Momentum Conservation: i = —M\TIF -1
di

Energy Conservation: £ = Me_lFT Y
d:

Equation of Motion: d—: =v

@ We used CUDA to accelerate the following computations on the GPU:

@ Evaluation of F.
@ Evaluation of F- 1 and FT - v.
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CUDA Kernels in BLAST

o Consider the semi-discrete finite element method in BLAST (without strength):

dv

Momentum Conservation: i = —M\TIF -1
di

Energy Conservation: £ = Me_lFT Y
d:

Equation of Motion: d—: =v

@ We used CUDA to accelerate the following computations on the GPU:

@ Evaluation of F.
@ Evaluation of F- 1 and FT - v.
@ CG solver for M; ! and sparse matvec for M ! based on CUBLAS/CUSPARSE.
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CUDA Kernels in BLAST

o Consider the semi-discrete finite element method in BLAST (without strength):

dv

Momentum Conservation: i = —M\TIF -1
di

Energy Conservation: £ = Me_lFT Y
d:

Equation of Motion: d—: =v

@ We used CUDA to accelerate the following computations on the GPU:

@ Evaluation of F.
@ Evaluation of F- 1 and FT - v.
@ CG solver for M; ! and sparse matvec for M ! based on CUBLAS/CUSPARSE.

@ Zonal corner forces {F,} and the sparse matrices M, and Me_1 are stored on the GPU.

@ Input/output vectors are transferred between the CPU and the GPU.
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Generalized Corner Forces on the GPU

o F can be assembled from {F}, which require a high order quadrature {(cx, Gi)}«:
(Fz); = /Q ( (0: VW) ¢~ > awd(Gic) + 7 (G VWil i) $5(Gk) 1 92(Gi)l -
z K

@ Two-level concurrency: hydro forces for each zone (different z) and each quadrature point
(different k) can be computed in parallel.

Kolev et al. (LLNL) High-Order Finite Elements for Lagrangian Hydro MultiMat 2011 22 /30



Generalized Corner Forces on the GPU

o F can be assembled from {F}, which require a high order quadrature {(cx, Gi)}«:
(Fz)j = /Q © (0: VW) ¢~ > awd(Gic) + 7 (G VWil i) $5(Gk) 1 92(Gi)l -
z K

@ Two-level concurrency: hydro forces for each zone (different z) and each quadrature point
(different k) can be computed in parallel.

Note that F, = A,BT, where

z

(A)ik = ad(Gk) 371G ) VWi (Gk)Iz(Gk)| and  (B2)j = ¢;(G) -

o CUDA Kernel 1: loop over the quadrature points
e Each thread block corresponds to one or more zones (tunable).
o Each thread works on one quadrature point and computes a column of the matrix A,.

e The weights o do not change in time and are kept in GPU's constant memory.

CUDA Kernel 2: loop over the zones
e Each thread block corresponds to one zone and performs the multiplication AZBI.
o Each thread evaluates one row of the resulting matrix F, (a kinematic dof).
o We store A, in the shared and B, in the constant GPU memory (hinted by the profiler).
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Serial GPU Performance

Tesla C1060
CPU: Xeon E5520

6

@

azq1 asqz

e

4

Tesla C2050

CPU: Xeon X5660

q3q2

@
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ISR AN N

o

3D q2ql

4

Quadro 5000
CPU: Xeon X5675

21 e azai@en  am? azat

=

4

@ Compare CPU and CPU+4+GPU code on one processor.

@ Three test problems: 2D Q:Q1, 2D @Q3Q2 and 3D QQ;.

@ Good speedup across several different CPU/GPU pairings.

@ GPU implementation required replacing LAPACK calls with hand-coded eigensolvers for
2 x 2 and 3 x 3 matrices, which also accelerated the CPU code significantly (2—4x).
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Serial GPU Performance

Tesla C1060 Tesla C2050 Quadro 5000

CPU: Xeon E5520 CPU: Xeon X5660 CPU: Xeon X5675

. - o l I/ -
q2q1 q3q2 a3q2 3D q2q1 aza1(> el azqi(@ren qza? a1

@ Compare CPU and CPU+4+GPU code on one processor.

@ Three test problems: 2D Q:Q1, 2D @Q3Q2 and 3D QQ;.

@ Good speedup across several different CPU/GPU pairings.

@ GPU implementation required replacing LAPACK calls with hand-coded eigensolvers for

2 x 2 and 3 x 3 matrices, which also accelerated the CPU code significantly (2—4x).
°

High ratio of kernel time to memory transfer.
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Parallel GPU Performance

MPI Result on 4 CP

3.6269

MPI4+CUDA on Tesla C2

25

2.75093

1.87495
b
1.5 i
| 0-908077
: .
0.123002
y
© MPI Result on 4 CPUs + 2 GPUs
3.627
0
1 2 4

Processor

@

2.75121

o Compare MPI and MPI4+GPU code on
1, 2 and 4 processors.

o Different floating point CPU/GPU
implementation lead to slight
differences in the numerical results.

| 0.999626

Iu.\zatm
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2D Shock triple-point interaction

v=0 ¥=0 p=0125 p=01 y=15 ? S. Galera, P-H. Maire, J. Breil,

p=1 A two-dimensional unstructured cell-centered
=il multi-material ALE scheme using VOF interface

y=15 =0 p=1 p=0.1 y=14 @ reconstruction, JCP, 2010.

Curved zones with high aspect ratios develop naturally in Lagrangian simulations and are
impossible to represent using elements with straight edges J
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Parallel shock i teraction

il

@ Run on 128 processors with non-uniform partitioning (from the METIS graph partitioner)
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Parallel shock le-point interacti

o Parallel subdomains undergo significant deformations.
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Parallel high-order shock triple-point interaction

e Compare Q> Q1-RK2Avg,
Q4 @Q3-RK4, QgQ7-2xRK4.

@ Same number of unknowns,
12 CPUs, t = 3.3.

[ [ Q/Q | Q/Q |
{G}|

o Directional length scale is
divided by polynomial order.

@ Higher order methods are
more efficient than expected.

One of the Qg basis functions
Kolev et al. (LLNL)
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Parallel high-order shock triple-point interaction

@ Compare @ @Q1-RK2Avg,
Q4 @Q3-RK4, QgQ7-2xRK4.

@ Same number of unknowns,
12 CPUs, t = 3.3.

[ [ Q/Q | Q/Q |
{Gi}|

@ Directional length scale is
divided by polynomial order.

o Higher order methods are
more efficient than expected.

One of the Qg basis functions
Kolev et al. (LLNL)
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Parallel high-order shock triple-point interaction

Q@Q1 Q1Q3 Qs Q7

A, is 18 x 16 A, is 50 x 36 A, is 162 x 144
B, is 4 x 16 B, is 16 x 36 B, is 64 x 144
F, flops/bytes ~ 29 F, flops/bytes ~ 248 F, flops/bytes ~ 3848
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Axisymmetric shock triple-point interaction
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Parallel 3

@ Initial 3D mesh is
unstructured in the
z-orthogonal plane

@ Parallel run on 10
processors with the
Q2 Q1-RK2Avg method.

@ Circular arcs are fitted in
Q2 position dofs which
are then refined once.

@ Shown is the revolved
density in the three
materials (logarithmic
scale).
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Parallel 3D shock triple-point interaction

@ Unstructured parallel data decomposition.

@ The robustness of the curvilinear zones extends to 3D multi-material problems.
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Conclusions and Future Directions

Some benefits of our high order discretization methods:

@ More accurate capturing of flow features using curvilinear zones.

o Exact total energy conservation by construction.

@ Substantial reduction in mesh imprinting and improved symmetry preservation.

@ Same framework for 2D, 3D and axisymmetric problems.

o Locally FLOP-intensive algorithms excel on modern parallel CPU+GPU architectures.
Future research directions:

@ NURBS-based hydro (collaboration with UCSD and LANL).

@ ALE: curvilinear mesh optimization; high-order field remap; multi-material zone treatment.

‘ 8
NURBS mesh in MFEM Original (left) and smoothed (right) curvilinear mesh obtained
representing a spherical shell. by high-order extension of local harmonic smoothing.

Kolev et al. (LLNL) High-Order Finite Elements for Lagrangian Hydro MultiMat 2011 30 / 30



	Axisymmetric Formulation
	Axisymmetric Problems
	What Can Go Wrong?
	Overview of Axisymmetric Methods
	Position and Strong Mass Conservation
	Axisymmetric Momentum Equation
	Axisymmetric Stress Tensor
	Semi-discrete Axisymmetric Method
	Axisymmetric Sedov Explosion
	Axisymmetric ICF-like Problem
	Axisymmetric Elastic-Plastic Shock Wave

	Parallel Implementation Strategy
	Parallelism in Our Research Codes
	First Parallel Layer: CPU/MPI Domain Decomposition
	Parallel Sedov Blast Problem
	Parallel Noh Implosion Problem
	Second Parallel Layer: GPU/CUDA Zone Decomposition
	CUDA Kernels in BLAST
	Generalized Corner Forces on the GPU
	Serial GPU Performance
	Parallel GPU Performance

	Numerical Results
	Shock Triple-Point Interaction
	Conclusions and Future Directions


	0.0: 
	0.1: 
	anm0: 
	1.0: 
	1.1: 
	anm1: 
	2.0: 
	2.1: 
	anm2: 
	3.0: 
	3.1: 
	anm3: 
	4.0: 
	4.1: 
	anm4: 
	5.0: 
	5.1: 
	anm5: 
	6.0: 
	6.1: 
	anm6: 
	7.0: 
	7.1: 
	anm7: 
	8.0: 
	8.1: 
	anm8: 
	9.0: 
	9.1: 
	anm9: 


